Does Acute Exposure to Mobile Phones Affect Human Attention?

Riccardo Russo,1* Elaine Fox,1 Caterina Cinel,1 Angela Boldini,1 Margaret A. Defeyter,1 Dariush Mirshakar,2 and Amith Mehta2

1Department of Psychology, University of Essex, Colchester, United Kingdom
2Department of Electronic Systems Engineering, University of Essex, Colchester, United Kingdom

Recent studies have indicated that acute exposure to low level radiofrequency (RF) electromagnetic fields generated by mobile phones affects human cognition. However, the relatively small samples used in addition to methodological problems make the outcomes of these studies difficult to interpret. In our study we tested a large sample of volunteers (168) using a series of cognitive tasks apparently sensitive to RF exposure (a simple reaction task, a vigilance task (VT), and a subtraction task). Participants performed those tasks twice, in two different sessions. In one session they were exposed to RF's, with half of subjects were exposed to GSM signals and the other half was exposed to CW signals, while in the other session they were exposed to sham signals. No significant effects of RF exposure on performance for either GSM nor CW were found, independent of whether the phone was positioned on the left or on the right side. Bioelectromagnetics 00:1–6, 2005.

Key words: GSM; RF; cognitive tests; behavioral effects

INTRODUCTION

Mobile telephone antennae emit low level radio-frequency (RF) electromagnetic fields with wavelength frequency bands starting from about 900 MHz. These fields may exert a force on the electric charges of body tissues located close to the emitting source, which, while not significantly increasing the temperature of biological tissues, could in principle exert an action that may affect the normal functioning of brain tissue [e.g., Cleary, 1995]. Hence, it has been suggested that acute exposure to RF fields generated by mobile phones could affect human cognition.

Recent studies have suggested that exposure to RF fields generated by either analogue or global system for mobile communication (GSM) mobile phones positively affect performance in memory and attention tasks [Preece et al., 1999; Koivisto et al., 2000a,b; Edelstyn and Oldershaw, 2002; Lee et al., 2003; Smythe and Costall, 2003; Cucio et al., 2004]. However, a serious question concerns whether the observed effects are genuine. In one study [Preece et al., 1999], 36 volunteers performed a series of cognitive tests while exposed to RF fields generated by analogue and GSM phones operating at about 900 MHz, as well as to a control condition without RF exposure. When exposed to the RF fields generated by analogue cellular phones, but not by GSM digital phones, people were faster in a two-choice reaction time task (CRT) compared to the control condition. No significant difference between exposure and control conditions occurred in any of the other cognitive tasks used. Similarly, another study [Koivisto et al., 2000b] found that, in a battery of about a dozen cognitive tests, there was a significant difference in performance between the exposure to GSM mobile phones condition and the control condition only in three tests, that is, a simple reaction time task (SRT), a subtraction task, and a vigilance task (VT). However, it is possible that these findings might reflect a statistical artifact, since the probability of wrongly rejecting a true null hypothesis in the family of statistical tests performed within each of the above studies was relatively high (i.e., >0.05). Moreover, in other studies...
the significant results obtained may have reflected poor matching of the baseline performance between control and exposure conditions [Edelstyn and Oldershaw, 2002; Lee et al., 2003]; type I statistical error [Smythe and Costall, 2003; Curcio et al., 2004]; small sample size with no attempt to replicate the original findings; or a speed-accuracy trade-off [Koivisto et al., 2000a]. Only two studies found no significant effect of RF field exposure on any of the cognitive tasks used [Haarala et al., 2003, 2004].

Given the widespread and increasing use of mobile phone technology around the world, it is vital to determine whether the RF fields emitted by these phones are indeed having a significant impact on human cognitive functions. It is, however, very difficult to draw firm conclusions on this question, since none of the studies which found significant findings, apart from Curcio et al. [2004], used a double blind design in administering RF exposure and control conditions. Hence, it is possible that a non-optimal administration of the independent variable may have led to spurious significant findings [cf. Haarala et al., 2003, 2004]. Thus, the evidence suggesting that exposure to RF fields emitted by mobile phones, either GSM or analogue, might affect performance in cognitive tasks remains unclear.

The aim of the present research was to overcome the limitations of previous studies in order to provide a thorough evaluation of the impact of the use of GSM and analogue continuous wave (CW) unmodulated signal mobile phones on attention in adults. To maximize the chance of detecting a significant effect of acute exposure to RF fields, we selected some of the tasks that previous studies [e.g., Koivisto et al., 2000b; Curcio et al., 2004] found were affected by RF exposure, that is, a SRT, a subtraction task, and a VT. To ensure high statistical power 168 volunteers were tested. Assuming that RF exposure (irrespective of this being associated to GSM or CW signals, and whether or not the exposure was primarily applied to the left or the right side of the head) may have a small effect on cognitive performance, that is, effect size, \(d = 0.3 \), with 168 participants we had a statistical power of about 0.97 to reject a false null hypothesis about the RF exposure effect. Hence, given the large power of the present study, any failure to reject the null hypothesis cannot be attributed to a lack of statistical sensitivity. Moreover, to assess if there is any differential effect of GSM modulated versus CW unmodulated signals, half of the participants were exposed to an 888 MHz CW signal and the remaining half were exposed to an 888 MHz GSM signal. Importantly, RF exposure was administered under fully double blind conditions. Furthermore, half of the participants were tested with the mobile phone positioned on their left ear, and the remaining half had the phone positioned on the right ear. This potential lateralized effect has not been examined in any previous study.

MATERIALS AND METHODS

Participants

One hundred and sixty-eight healthy volunteers (99 women, 69 men; average age = 23.5 years; range 17–41) with normal or corrected-to-normal vision were tested in two different sessions, 1 week apart; each subject attended the two sessions at the same time of the day. Participants were students of the University of Essex recruited through advertisements in the campus; each participant was paid 10 Pounds Sterling. In one session participants were exposed to RF fields: a random half of the participants to GSM modulated signal and the other half to CW unmodulated signal, both at 888 MHz; the phones (discontinuous transmission was disabled). In the other session there was no exposure. In that case the power, either in GSM or CW, was actually diverted to an internal load of the phone. Half of the participants were exposed to RF on the first session with the no-exposure condition on the second session, and vice-versa for the other half. Both participants and experimenters were blind to the on-off exposure condition. Of all participants, 4% were not mobile phone users, 35% did use a mobile phone for about 5 min or less on average per day, and the remaining 61% used a mobile phone for more than 5 min per day.

Materials

A mobile phone was fixed on a “cage/cap” that was mounted on the head of each participant. The handset device was positioned on the head so that the telephone microphone was close to the mouth and the antenna was touching or very close to the head, above and slightly behind the ear. The mobile phone was on the left side of the head for half participants and on the right for the other half, irrespective of the handedness of participants.

The mobile phone could emit GSM modulated and CW unmodulated signals at 888 MHz as well as a sham signal. The level of specific energy absorption rate (SAR) in the present study was the same for both CW and GSM signals with SAR within the International Commission on Non-Ionizing Radiation Protection guidelines. The average SAR in both modes was 1.4 W/Kg (±30%). For the GSM mode the peak SAR was 11.2 W/Kg (CW does not have a peak). The SAR in
the no exposure condition was less than 0.002 W/kg. The above features correspond to the approved exposure system made for the Mobile Telecommunication and Health Research Programme (http://www.mthr.org.uk/meetings/nov_2002/summaries/human_exposure.htm) in the UK. The measurements were made in a phantom head over a 36 by 17 measurement grid with 5 mm spacing, using the standard CENELEC (The European Committee for Electrotechnical Standardization) device position and measurement procedures. The phantom headshell used for the dosimetric assessments was constructed by vacuum injection moulding of reinforced fiberglass resin using inner and outer moulds. The shell thickness was 2.0 ± 0.2 mm over the sides of the head.

Procedure

Participants were asked not to use any mobile telephone for at least 1 h before each session. At the beginning (and at the end) of each session, participants completed a questionnaire to rate a series of subjective symptoms. Then the mobile phone set was mounted on the head and 42 on the right side. Data were analyzed on- or off-exposure conditions and the order of presentation of the experimental tasks were counterbalanced across participants. The procedures used in this study complied with the relevant safeguards and regulations in place for studies testing human participants at the University of Essex and the study was approved by the University of Essex Ethics Committee.

Statistical Analysis

All participants were exposed to both ON and OFF (sham) conditions (in counterbalanced order). In the ON condition, 84 participants were exposed to GSM signals and 84 to CW signals. For each group, 42 subjects had the phone positioned on the left side of the head and 42 on the right side. Data were analyzed with a mixed factorial ANOVA, where the factors were Type of signal (CW and GSM, between subject factor),
RF exposure (On vs. Off, within subject factor), and Position (left vs. right, between subject factor). Supplementary analyses were conducted to assess any effect of practice and on differential effects of the On vs. Off variable on sex. This analysis was conducted to assess the extent to which the Smythe and Costall [2003] findings, of a differential impact of the On/Off variable on women versus men could be replicated using attentional tasks.

RESULTS

Table 1 provides the mean of the median RTs for each participant in each of the tasks used. RTs of incorrect responses were removed. A series of 2 (type of signal: CW vs. GSM) × 2 (position of the phone: Left vs. Right) × 2 (RF exposure: On vs. Off) mixed factorial ANOVAs were performed on the median, the log transformed median, the arithmetic, and the geometric mean of the performance of each participant in each condition. The results of these analyses were comparable, so only those carried out on medians are reported. A summary of the analyses carried out on each task follows.

Effects of RF/Sham Exposure

Simple reaction time task. None of the main effects was significant \([Fs (1, 164) < 1.21]\), none of the two-way interactions \([Fs (1, 164) < 1.1]\), nor the three-way interaction was significant \([F (1, 164) = 3.26, P > .05]\). Participants did not make any errors in this task.

Vigilance task. None of the main effects was significant \([Fs (1, 164) < 1.26]\), none of the two-way interactions \([Fs (1, 164) < 2.82]\), nor the three-way interaction was significant \([F (1, 164) < 1]\). The proportion of missed targets across conditions ranged from 0.022 to 0.041. A mixed factorial ANOVA on these error data did not show any significant effect \([Fs (1, 164) < 2.07, P > .15]\), indicating that there was not a speed-accuracy trade-off.

Ten CRT and subtraction tasks. Mixed factorial ANOVAs on the RTs obtained both in the 10 choice and in the subtraction task showed that none of the main effects nor interaction were significant \([Fs (1, 164) < 1.31]\). Moreover, the 10CRT performance could be considered a baseline for the subtraction task. Hence, by

<table>
<thead>
<tr>
<th>Task(^a)</th>
<th>Type of signal(^b)</th>
<th>Phone position(^c)</th>
<th>Exposure(^d)</th>
<th>ON</th>
<th>OFF</th>
<th>(P)-value(^e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple reaction time task (SRT)</td>
<td>Vigilance task (VT)</td>
<td>10 choice reaction time task (10CRT)</td>
<td>Subtraction task (ST)</td>
<td>ST–10CRT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>Left</td>
<td>315</td>
<td>316</td>
<td>>.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRT</td>
<td>Right</td>
<td>323</td>
<td>321</td>
<td>>.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>GSM</td>
<td>Left</td>
<td>311</td>
<td>307</td>
<td>>.23</td>
<td></td>
</tr>
<tr>
<td>VT</td>
<td>Right</td>
<td>313</td>
<td>323</td>
<td>>.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>Left</td>
<td>286</td>
<td>284</td>
<td>>.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10CRT</td>
<td>Right</td>
<td>300</td>
<td>295</td>
<td>>.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>GSM</td>
<td>Left</td>
<td>294</td>
<td>299</td>
<td>>.25</td>
<td></td>
</tr>
<tr>
<td>GW</td>
<td>Right</td>
<td>300</td>
<td>295</td>
<td>>.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>Left</td>
<td>461</td>
<td>467</td>
<td>>.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtraction task (ST)</td>
<td>Right</td>
<td>474</td>
<td>469</td>
<td>>.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>GSM</td>
<td>Left</td>
<td>474</td>
<td>475</td>
<td>>.82</td>
<td></td>
</tr>
<tr>
<td>10CRT</td>
<td>Right</td>
<td>483</td>
<td>485</td>
<td>>.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>Left</td>
<td>732</td>
<td>736</td>
<td>>.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>Right</td>
<td>750</td>
<td>751</td>
<td>>.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST–10CRT</td>
<td>GSM</td>
<td>Left</td>
<td>770</td>
<td>767</td>
<td>>.77</td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>Right</td>
<td>737</td>
<td>754</td>
<td>>.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST–10CRT</td>
<td>Left</td>
<td>271</td>
<td>269</td>
<td>>.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW</td>
<td>Right</td>
<td>276</td>
<td>282</td>
<td>>.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>Left</td>
<td>297</td>
<td>292</td>
<td>>.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST–10CRT</td>
<td>Right</td>
<td>253</td>
<td>269</td>
<td>>.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(a\)Simple reaction time task (SRT) vigilance task (VT), 10 choice reaction time task (10CRT) subtraction task (ST) and on the RT difference between ST and 10CRT.

\(b\)Type of signal (unmodulated vs. modulated, i.e., CW vs. GSM).

\(c\)Position of the phone (Left vs. Right; number of subjects in parenthesis).

\(d\)RF exposure (On vs. Off).

\(e\)The \(P\)-values refer to the test of the ON vs. OFF variable. \(N = 42\) participants per group.
removing the RTs obtained in the 10CRT task from the RTs obtained in the subtraction task we can obtain an estimate of the net time required to perform arithmetic subtractions. A mixed ANOVA on the RTs obtained by subtracting the RTs in the 10CRT from the subtraction task did not show any significant effect \(F_s (1, 164) < 1 \).

The proportion of errors across conditions ranged from 0.025 to 0.044. A mixed factorial ANOVA on these error data did not show any significant effect \(F_s (1, 164) < 2.0, P > .15 \), indicating that there was no a speed-accuracy trade-off.

RF/Sham Exposure in Session 1 and Session 2

To control the presence of practice effects on performance, we did an ANOVA where On and Off performances were compared separately for the first session and the second session. No significant differences between On and Off RTs were found for the first session nor for the second session. Average RTs and \(p \)-values for \(t \)-tests are shown in Table 2.

RF/Sham Exposure and Gender

To examine possible interactions between gender and On/Off exposure, we performed an ANOVA with RF exposure (On vs. Off, within subject factor) and Gender (male female, between subject factor) as factors. No significant interactions were found between On-Off exposure and gender (see Table 3).

DISCUSSION AND CONCLUSION

We found that when a large sample of participants is tested and exposure to RF fields is administered in a double blind manner, then RF emitted by mobile phones does not appear to significantly affect performance in a series of attentional tasks. It is important to note that these are the same tasks that previous, less powerful, studies have shown were affected by exposure to RF fields. There are some methodological discrepancies in response modality and number of trials between two of our experiments, and those conducted by Koivisto et al. [2000b]. However, we believe that our methodological changes were unlikely to interfere with attentional processing. In fact, we would argue that they should improve the chances of detecting possible effects (if any) of RFs on human attention. Moreover, in our study whether RF exposure originated from the right or the left, or whether the RF signal was modulated or unmodulated, made little difference to any of the cognitive tests. Finally, RF exposure effects were not modulated by gender in any of the tasks.

![Image](Author_Proof.png)

TABLE 2. RTs (in ms) for Each Attentional Task, According to the Session (Session 1 and Session 2) and to Whether the Phone was On (RF Exposure) or Off (Sham Exposure)

<table>
<thead>
<tr>
<th>Task</th>
<th>Session 1</th>
<th>Session 2</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10CRT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST–10CRT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RTs ON</th>
<th>RTs OFF</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>312</td>
<td>314</td>
<td>>.82</td>
</tr>
<tr>
<td>318</td>
<td>319</td>
<td>>.95</td>
</tr>
<tr>
<td>293</td>
<td>303</td>
<td>>.24</td>
</tr>
<tr>
<td>297</td>
<td>288</td>
<td>>.27</td>
</tr>
<tr>
<td>466</td>
<td>476</td>
<td>>.37</td>
</tr>
<tr>
<td>480</td>
<td>473</td>
<td>>.49</td>
</tr>
<tr>
<td>765</td>
<td>771</td>
<td>>.84</td>
</tr>
<tr>
<td>730</td>
<td>733</td>
<td>>.87</td>
</tr>
<tr>
<td>289</td>
<td>295</td>
<td>>.88</td>
</tr>
<tr>
<td>288</td>
<td>261</td>
<td>>.59</td>
</tr>
</tbody>
</table>

\(\text{p-values resulting from the statistical analysis where, for each session, On RTs were compared with Off RTs.} \)

TABLE 3. Mean and \(p \)-values of the Interactions Between Gender and RF Exposure for Each of the Tasks Used

<table>
<thead>
<tr>
<th>Task</th>
<th>Female</th>
<th>Male</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRT</td>
<td>315</td>
<td>317</td>
<td>>.29</td>
</tr>
<tr>
<td>VT</td>
<td>314</td>
<td>321</td>
<td>>.52</td>
</tr>
<tr>
<td>10CRT</td>
<td>299</td>
<td>289</td>
<td>>.33</td>
</tr>
<tr>
<td>ST</td>
<td>478</td>
<td>466</td>
<td>>.78</td>
</tr>
<tr>
<td>ST–10CRT</td>
<td>774</td>
<td>709</td>
<td>>.64</td>
</tr>
</tbody>
</table>

The study of the effect of exposure to RF fields on behavior and health parameters is a highly controversial field of science with significant public interest and concern. Research to date suggests that it is unlikely that any effect on biological systems induced by the use of mobile phone can be ascribed to thermal effects. While there is public concern about non-thermal effects, there seems to be no viable theoretical basis to understand the possible non-thermal effects that microwave fields might have on biological systems [e.g., Maier et al., 2000]. In this theoretical vacuum, it is of some concern that research reports demonstrating an effect of RF fields generated by mobile phones on behavioral or on health parameters have not been subsequently replicated, especially when more sophisticated methodologies have been implemented [e.g., Repacholi, 1997; Krause et al., 2000, 2003; Utteridge et al., 2002].

In summary, the results we obtained do not, of course, preclude the possibility that exposure to RF
fields generated by mobile phones may affect other aspects of cognitive functions that were not measured by the tasks we used. However, the present study highlights the need for replicable patterns of results using adequately powered studies in order to provide a sound empirical foundation for any theoretical understanding of how RF fields might affect cognitive functioning.

ACKNOWLEDGMENTS

Margaret A. Defeyter is now at the Division of Psychology, University of Northumbria, Newcastle Upon Tyne, UK. We would like to thank two anonymous reviewers for their suggestions and their helpful comments. The Mobile Telecommunications and Health Research Programme (Grant ref. RUM9) to Riccardo Russo, Elaine Fox, and Dariush Mirshekar. The views expressed in the publication are those of the authors and not necessarily those of the funders.

REFERENCES

READ PROOFS CAREFULLY
- This will be your only chance to review these proofs.
- Please note that the volume and page numbers shown on the proofs are for position only.

ANSWER ALL QUERIES ON PROOFS (Queries for you to answer are attached as the last page of your proof.)
- Mark all corrections directly on the proofs. Note that excessive author alterations may ultimately result in delay of publication and extra costs may be charged to you.

CHECK FIGURES AND TABLES CAREFULLY (Color figures will be sent under separate cover.)
- Check size, numbering, and orientation of figures.
- All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article.
- Review figure legends to ensure that they are complete.
- Check all tables. Review layout, title, and footnotes.

COMPLETE REPRINT ORDER FORM
- Fill out the attached reprint order form. It is important to return the form even if you are not ordering reprints. You may, if you wish, pay for the reprints with a credit card. Reprints will be mailed only after your article appears in print. This is the most opportune time to order reprints. If you wait until after your article comes off press, the reprints will be considerably more expensive.

RETURN
☐ PROOFS
☐ REPRINT ORDER FORM
☐ CTA (If you have not already signed one)

RETURN WITHIN 48 HOURS OF RECEIPT VIA FAX TO Patrick Snajder AT 201-748-6825

QUESTIONS?
Patrick Snajder, Production Editor
Phone: 201-748-8807
E-mail: psnajder@wiley.com
Refer to journal acronym and article production number (i.e., BEM 00-001 for BioElectroMagnetics 00-001).
COPYRIGHT TRANSFER AGREEMENT

Date:

To: ____________________________

Production/Contribution
ID# ________________
Publisher/Editorial office use only

Re: Manuscript entitled ________________________________
for publication in ________________________________
published by Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc. ("Wiley").

Dear Contributor(s):

Thank you for submitting your Contribution for publication. In order to expedite the publishing process and enable Wiley to disseminate your work to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned to us as soon as possible. If the Contribution is not accepted for publication this Agreement shall be null and void.

A. COPYRIGHT

1. The Contributor assigns to Wiley, during the full term of copyright and any extensions or renewals of that term, all copyright in and to the Contribution, including but not limited to the right to publish, republish, transmit, sell, distribute and otherwise use the Contribution and the material contained therein in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the Contribution or any material contained therein, in any medium as permitted hereunder, requires a citation to the Journal and an appropriate credit to Wiley as Publisher, suitable in form and content as follows: (Title of Article, Author, Journal Title and Volume/Issue Copyright © [year] Wiley-Liss, Inc. or copyright owner as specified in the Journal.)

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor's Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution, and the right to make oral presentations of material from the Contribution.

C. OTHER RIGHTS OF CONTRIBUTOR

Wiley grants back to the Contributor the following:

1. The right to share with colleagues print or electronic "preprints" of the unpublished Contribution, in form and content as accepted by Wiley for publication in the Journal. Such preprints may be posted as electronic files on the Contributor's own website for personal or professional use, or on the Contributor's internal university or corporate networks/intranet, or secure external website at the Contributor's institution, but not for commercial sale or for any systematic external distribution by a third party (e.g., a listserv or database connected to a public access server). Prior to publication, the Contributor must include the following notice on the preprint: "This is a preprint of an article accepted for publication in [Journal title] © copyright (year) (copyright owner as specified in the Journal)". After publication of the Contribution by Wiley, the preprint notice should be amended to read as follows: "This is a preprint of an article published in [include the complete citation information for the final version of the Contribution as published in the print edition of the Journal]", and should provide an electronic link to the Journal's WWW site, located at the following Wiley URL: http://www.interscience.Wiley.com/. The Contributor agrees not to update the preprint or replace it with the published version of the Contribution.

2. The right, without charge, to photocopy or to transmit online or to download, print out and distribute to a colleague a copy of the published Contribution in whole or in part, for the Contributor's personal or professional use, for the
advancement of scholarly or scientific research or study, or for corporate informational purposes in accordance with Paragraph D.2 below.

3. The right to republish, without charge, in print format, all or part of the material from the published Contribution in a book written or edited by the Contributor.

4. The right to use selected figures and tables, and selected text (up to 250 words, exclusive of the abstract) from the Contribution, for the Contributor's own teaching purposes, or for incorporation within another work by the Contributor that is made part of an edited work published (in print or electronic format) by a third party, or for presentation in electronic format on an internal computer network or external website of the Contributor or the Contributor's employer.

5. The right to include the Contribution in a compilation for classroom use (course packs) to be distributed to students at the Contributor's institution free of charge or to be stored in electronic format in data rooms for access by students at the Contributor's institution as part of their course work (sometimes called "electronic reserve rooms") and for in-house training programs at the Contributor's employer.

D. CONTRIBUTIONS OWNED BY EMPLOYER
 1. If the Contribution was written by the Contributor in the course of the Contributor's employment (as a "work-made-for-hire" in the course of employment), the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor's signature), in the space provided below. In such case, the company/employer hereby assigns to Wiley, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

 2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the published Contribution internally in print format or electronically on the Company's internal network. Upon payment of the Publisher's reprint fee, the institution may distribute (but not resell) print copies of the published Contribution externally. Although copies so made shall not be available for individual re-sale, they may be included by the company/employer as part of an information package included with software or other products offered for sale or license. Posting of the published Contribution by the institution on a public access website may only be done with Wiley's written permission, and payment of any applicable fee(s).

E. GOVERNMENT CONTRACTS
In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Government purposes only, if the U.S. Government contract or grant so requires. (U.S. Government Employees: see note at end).

F. COPYRIGHT NOTICE
The Contributor and the company/employer agree that any and all copies of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley.

G. CONTRIBUTOR'S REPRESENTATIONS
The Contributor represents that the Contribution is the Contributor's original work. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before, except for "preprints" as permitted above. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley's permissions form or in the Journal's Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe on the rights or privacy of others, or contain material or instructions that might cause harm or injury.
CHECK ONE:

[____] Contributor-owned work

Contributor's signature ____________________ Date ____________________

Type or print name and title

Co-contributor's signature ____________________ Date ____________________

Type or print name and title

ATTACHED ADDITIONAL SIGNATURE PAGE AS NECESSARY

[____] Company/Institution-owned work (made-for-hire in the course of employment)

Company or Institution (Employer-for-Hire) ____________________ Date ____________________

Authorized signature of Employer ____________________ Date ____________________

[____] U.S. Government work

Note to U.S. Government Employees

A Contribution prepared by a U.S. federal government employee as part of the employee's official duties, or which is an official U.S. Government publication is called a "U.S. Government work," and is in the public domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign and return this Agreement. If the Contribution was not prepared as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.

[____] U.K. Government work (Crown Copyright)

Note to U.K. Government Employees

The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. In such case, the Publisher will forward the relevant form to the Employee for signature.
PREPUBLICATION REPRINT ORDER FORM

Please complete and return this form even if you do not wish to order any reprints together with the second page of the page charge form. Fill either the top or bottom section, whichever is applicable.

<table>
<thead>
<tr>
<th>BIOELECTROMAGNETIC</th>
<th>VOLUME</th>
<th>ISSUE</th>
<th>ARTICLE NO.</th>
<th>NO. OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR(S)</td>
<td></td>
<td>ARTIST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ My institution does pay page charges. Please supply me with 100 reprints at no charge plus additional reprints of the above article for $ plus shipping and handling charges. (Tax Exempt #)

<table>
<thead>
<tr>
<th>No. of Pages</th>
<th>100 Reprints</th>
<th>200 Reprints</th>
<th>300 Reprints</th>
<th>400 Reprints</th>
<th>500 Reprints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>$117</td>
<td>$168</td>
<td>$219</td>
<td>$270</td>
<td>$321</td>
</tr>
<tr>
<td>5-8</td>
<td>$156</td>
<td>$241</td>
<td>$326</td>
<td>$411</td>
<td>$496</td>
</tr>
<tr>
<td>9-12</td>
<td>$195</td>
<td>$314</td>
<td>$433</td>
<td>$552</td>
<td>$671</td>
</tr>
<tr>
<td>13-16</td>
<td>$234</td>
<td>$387</td>
<td>$540</td>
<td>$693</td>
<td>$846</td>
</tr>
<tr>
<td>17-20</td>
<td>$273</td>
<td>$460</td>
<td>$647</td>
<td>$834</td>
<td>$1,021</td>
</tr>
<tr>
<td>21-24</td>
<td>$311</td>
<td>$532</td>
<td>$753</td>
<td>$974</td>
<td>$1,195</td>
</tr>
<tr>
<td>25-28</td>
<td>$349</td>
<td>$603</td>
<td>$857</td>
<td>$1,111</td>
<td>$1,365</td>
</tr>
<tr>
<td>29-32</td>
<td>$387</td>
<td>$674</td>
<td>$961</td>
<td>$1,248</td>
<td>$1,535</td>
</tr>
<tr>
<td>33-36</td>
<td>$425</td>
<td>$745</td>
<td>$1,065</td>
<td>$1,385</td>
<td>$1,705</td>
</tr>
<tr>
<td>37-40</td>
<td>$463</td>
<td>$816</td>
<td>$1,169</td>
<td>$1,522</td>
<td>$1,875</td>
</tr>
</tbody>
</table>

(Shipping charges and applicable sales taxes are additional)

☐ My institution does not pay page charges. Please supply me with reprints of the above article for $ plus shipping and handling charges. (Tax Exempt #)

<table>
<thead>
<tr>
<th>No. of Pages</th>
<th>100 Reprints</th>
<th>200 Reprints</th>
<th>300 Reprints</th>
<th>400 Reprints</th>
<th>500 Reprints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>$203</td>
<td>$376</td>
<td>$522</td>
<td>$668</td>
<td>$790</td>
</tr>
<tr>
<td>5-8</td>
<td>$287</td>
<td>$528</td>
<td>$741</td>
<td>$940</td>
<td>$1,110</td>
</tr>
<tr>
<td>9-12</td>
<td>$357</td>
<td>$660</td>
<td>$927</td>
<td>$1,176</td>
<td>$1,390</td>
</tr>
<tr>
<td>13-16</td>
<td>$429</td>
<td>$792</td>
<td>$1,116</td>
<td>$1,416</td>
<td>$1,670</td>
</tr>
<tr>
<td>17-20</td>
<td>$477</td>
<td>$884</td>
<td>$1,239</td>
<td>$1,572</td>
<td>$1,865</td>
</tr>
<tr>
<td>21-24</td>
<td>$547</td>
<td>$1,010</td>
<td>$1,419</td>
<td>$1,800</td>
<td>$2,125</td>
</tr>
<tr>
<td>25-28</td>
<td>$604</td>
<td>$1,118</td>
<td>$1,572</td>
<td>$1,992</td>
<td>$2,355</td>
</tr>
<tr>
<td>29-32</td>
<td>$665</td>
<td>$1,230</td>
<td>$1,725</td>
<td>$2,188</td>
<td>$2,590</td>
</tr>
<tr>
<td>33-36</td>
<td>$731</td>
<td>$1,350</td>
<td>$1,896</td>
<td>$2,408</td>
<td>$2,850</td>
</tr>
<tr>
<td>37-40</td>
<td>$797</td>
<td>$1,474</td>
<td>$2,073</td>
<td>$2,628</td>
<td>$2,995</td>
</tr>
</tbody>
</table>

(Shipping charges and applicable sales taxes are additional)

Reprints are available only in lots of 100. IF YOU WISH TO ORDER MORE THAN 500 REPRINTS, PLEASE CONTACT OUR REPRINT DEPARTMENT AT (201) 748-8807 FOR A PRICE QUOTE.

BILL TO: Name
Institution
Address
Phone
Purchase Order No.

If “BILL TO” is an institution, order form must be accompanied or followed by a purchase order made out to the Publisher, Wiley-Liss, Inc.

PLEASE NOTE: This form is sent to only one author of each article. If your co-authors will want reprints, be sure to order them on this form together with yours. Please complete and return this form within 48 hours of receipt. Reprints ordered after printing of an issue are more expensive.
PAGE CHARGE FORM

Bioelectromagnetics, Volume ______, Issue ______

Authors: __

Article number: _______

The Bioelectromagnetics Society request that the author’s institution pay a part of the cost of publication in the form of a page charge of $80 per page. This charge entitles the institution to 100 free reprints. There will be no discrimination against papers for which page charges are not paid. Additional reprints may be ordered directly from the publisher on the enclosed form.

Number of pages: _______ @$80 per page = $_______.

My institution will pay page charges: YES _______; NO _______.

If YES, enclosed is a check _______; purchase order _______.

Ship 100 reprints to:

Name: __

Address: ___

Signature: ___________________________ Date: _________________

Please fill in and return one copy along with a check or purchase order to the Bioelectromagnetics Society at the above address. Return another copy to the publisher, Wiley-Liss, Inc., 111 River Street, Hoboken, NJ 07030, USA, together with your order for additional reprints and proofs.
Acrobat annotation tools can be very useful for indicating changes to the PDF proof of your article. By using Acrobat annotation tools, a full digital pathway can be maintained for your page proofs.

The NOTES annotation tool can be used with either Adobe Acrobat 4.0, 5.0 or 6.0. Other annotation tools are also available in Acrobat 4.0, but this instruction sheet will concentrate on how to use the NOTES tool. Acrobat Reader, the free Internet download software from Adobe, DOES NOT contain the NOTES tool. In order to softproof using the NOTES tool you must have the full software suite Adobe Acrobat 4.0, 5.0 or 6.0 installed on your computer.

Steps for Softproofing using Adobe Acrobat NOTES tool:

1. Open the PDF page proof of your article using either Adobe Acrobat 4.0, 5.0 or 6.0. Proof your article on-screen or print a copy for markup of changes.

2. Go to File/Preferences/Annotations (in Acrobat 4.0) or Document/Add a Comment (in Acrobat 6.0) and enter your name into the “default user” or “author” field. Also, set the font size at 9 or 10 point.

3. When you have decided on the corrections to your article, select the NOTES tool from the Acrobat toolbox and click in the margin next to the text to be changed.

4. Enter your corrections into the NOTES text box window. Be sure to clearly indicate where the correction is to be placed and what text it will effect. If necessary to avoid confusion, you can use your TEXT SELECTION tool to copy the text to be corrected and paste it into the NOTES text box window. At this point, you can type the corrections directly into the NOTES text box window. **DO NOT correct the text by typing directly on the PDF page.**

5. Go through your entire article using the NOTES tool as described in Step 4.

6. When you have completed the corrections to your article, go to File/Export/Annotations (in Acrobat 4.0) or Document/Add a Comment (in Acrobat 6.0).

7. **When closing your article PDF be sure NOT to save changes to original file.**

8. To make changes to a NOTES file you have exported, simply re-open the original PDF proof file, go to File/Import/Notes and import the NOTES file you saved. Make changes and re-export NOTES file keeping the same file name.

9. When complete, attach your NOTES file to a reply e-mail message. Be sure to include your name, the date, and the title of the journal your article will be printed in.