Publications [Qingfu Zhang's Homepage]

Selected Journal Papers:

  1. S-Z Zhao, P N Suganthan, and Q Zhang, MOEA/D with an Ensemble of Neighbourhood Sizes, IEEE Trans on Evolutionary Computation, (TEC) 16(3):442-446 (2012).

  2. D. Saxena, J. A. Duro, A. Tiwari, K. Deb, and Q. Zhang, Objective Reduction in Many-objective Optimization: Linear and Nonlinear Algorithms, IEEE Trans on Evolutionary Computation, 2011. Accepted.

  3. J. Sun, J. M. Garibaldi, N. Krosnogor and Q. Zhang, An Intelligent Multi-Restart Memtic Algorithm for Unconstrained Global Optimization, Evolutionary Computation, 2011. Accepted.

  4. A. Zhou, B-Y Qu, H. Li, S-Z Zhao, P. N. Suganthan, and Q. Zhang, Multiobjective evolutionary algorithms: A survey of the state of the art, Swarm and Evolutionary Computation, vol. 1, pp. 32-49, 2011.
  5. Shih-Hsin Chen, Pei-Chann Chang, T. C. E. Cheng, and Qingfu Zhang, A Self-guided Genetic Algorithm for permutation flowshop scheduling problems. Computers & OR (COR) 39(7):1450-1457, 2012,
  6. Yong Wang, Zixing Cai, Qingfu Zhang, Enhancing the search ability of differential evolution through orthogonal crossover. Inf. Sci. 185(1):153-177 (2012)
  7. J. Sun, Q. Zhang and J. Li, Two-Level Evolutionary Approach to the Survivable Mesh-Based Transport Network Topological Design, Journal of Heuristics, vol. 16, no.5, pp723-744, 2010.
  8. Y. Wang, Z. Cai and Q. Zhang,Differential Evolution with Composite Trial Vector Generation Strategies and Control Parameters, IEEE Trans on Evolutionary Computation, paper (pdf) matlab code Vo1. 14, no.1, pp.55-66, 2011.
  9. Shih-Hsin Chen, Min-Chih Chen, Pei-Chann Chang, Qingfu Zhang, and Yuh-Min Chen: Guidelines for developing effective Estimation of Distribution Algorithms in solving single machine scheduling problems. Expert Syst. Appl. (ESWA) 37(9):6441-6451 (2010)
  10. Andreas Konstantinidis, Kun Yang, Qingfu Zhang, and Demetrios Zeinalipour-Yazti: A multi-objective evolutionary algorithm for the deployment and power assignment problem in wireless sensor networks. Computer Networks (CN) 54(6):960-976 (2010)
  11. Q. Zhang, W. Liu, E. Tsang and B. Virginas, Expensive Multiobjective Optimization by MOEA/D with Gaussian Process Model, paper (pdf) and source code(updated on 20/09/2010, IEEE Trans on Evolutionary Computation, vol. 14, no. 3, pp456-474. 2010.
  12. A. Zhou, Q. Zhang and Y. Jin, Approximating the Set of Pareto Optimal Solutions in Both the Decision and Objective Spaces by an Estimation of Distribution Algorithm, paper(pdf), C++ code, IEEE Trans on Evolutionary Computation, vol. 13, no. 5, pp1167-1189, 2009.
  13. H. Li and Q. Zhang, Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D and NSGA-II, IEEE Trans on Evolutionary Computation, vol. 12, no 2, pp 284-302, 2009, paper (pdf) and C++ code.
  14. Chen, S. H., P. C. Chang, Q Zhang, C. B. Wang, A Guided Memetic Algorithm with Probabilistic Models, accepted by International Journal of Innovative Computing, Information and Control, 2009.
  15. D. Meng, Y. Leung, Z. Xu, T. Fung, Q. Zhang: Improving geodesic distance estimation based on locally linear assumption. Pattern Recognition Letters 29 (7): 862-870 (2008)
  16. J. Sun, Q. Zhang, J. Li and X. Yao, A Hybrid Estimation of Distribution Algorithm for CDMA Cellular System Design, International Journal of Computational Intelligence and Applications, 2007 accepted.
  17. Q. Zhang, J. Sun, and E Tsang, Combinations of Estimation of Distribution Algorithms and Other Techniques, (pdf), International Journal of Automation & Computing, July, 2007, 273-280.
  18. Q. Zhang, A. Zhou and Y. Jin, RM-MEDA: A Regularity Model Based Multiobjective Estimation of Distribution Algorithm, IEEE Trans. on Evolutionary Computation,vol. 12, no. 1, pp 41-63, 2008 MATLAB code , C++ code, and Erratum to figure 20.
  19. Q. Zhang and H. Li, MOEA/D: A Multi-objective Evolutionary Algorithm Based on Decomposition, IEEE Trans. on Evolutionary Computation,vol.11, no 6, pp712-731, 2007. Results. C++Code: continuous MOP and knapsack problem. Matlab Code . Java Code (written by Wudong Liu) (Erratum: Section II.B. P113, zi*=max{fi(x)|x∈Ω} should read as zi*>max{fi(x)|x∈Ω} )
  20. Q. Zhang, J. Sun, G. Xiao and E. Tsang, Evolutionary Algorithms Refining A Heuristic: Hyper-Heuristic for Shared-Path Protections in WDM Networks under SRLG Constraints, IEEE Trans on Systems, Man and Cybernetics, Part B, Vol.37, no. 1, pp51-61, Feb, 2007. Code and Test Problem (EDA+GA was used in this paper).
  21. Konstantinidis, K. Yang, H-H Chen and Q. Zhang, Energy Aware Topology control for Wireless Sensor Networks Using Memetic Algorithms, Computer Communications journal SI, Elsevier, 2007.
  22. Q. Zhang, J. Sun and E. Tsang, EDA+GA: Evolutionary Algorithm with Guided Mutation for the Maximum Clique Problem, IEEE Trans. on Evolutionary Computation, vol 9, no.2, pp192-200, 2005. C++ Code
  23. J. Sun, Q. Zhang and E. Tsang, DE/EDA: New Evolutionary Algorithm for Global Optimisation, Information Sciences (169), 2005, pp249-262. C++ code
  24. Q. Zhang, On the Convergence of a Factorized Distribution Algorithm with Truncation Selection, Complexity, Vol. 9, No. 4, 2004, pp17-23.
  25. Q. Zhang, On Stability of Fixed Points of Limit Models of Univariate Marginal Distribution Algorithm and Factorized Distribution Algorithm, IEEE Trans. on Evolutionary Computation, Vol. 8, No.1, 2004.
  26. Q. Zhang, H. Muehlenbein, On the Convergence of a Class of Estimation of Distribution Algorithms, IEEE Trans. on Evolutionary Computation, Vol. 8, No. 2, 2004.
  27. Q. Zhang, On the Discrete-Time Dynamics of a PCA Learning Algorithm, Neurocomputing 55, 2003, pp761-769.
  28. Q. Zhang, J. Sun, E. Tsang and J. Ford, Hybrid Estimation of Distribution Algorithm for Global Optimsation, Engineering Computations, vol. 21, no. 1, 2004, pp91-107.
  29. A Class of Learning Algorithms for PCA and MCA, IEEE Trans on Neural Networks, Vol.11, No.1, 2000.
  30. Q. Zhang and Y. W. Leung, Orthogonal Genetic Algorithm for Multimedia Multicast Routing. , IEEE Trans on Evolutionary Computation, Vol. 3, No. 1, 1999.
  31. Q. Zhang, Y. W. Leung, Convergence of a Hebbian-Type Learning Algorithm, IEEE Trans. on Circuit and Systems, No.12, Vol.15, 1998.
  32. Q. Zhang and Y. W. Leung, Dynamical system for solving complex eigenvalue problems, IEE Proceedings - Control Theory and Applications, vol.144, no.5, September 1997.
  33. Q. Zhang , G. Xiao and K. Chen, A New Polynomial Time Algorithm for Linear Programming Problems, ACTA Mathematicae Applicatae, SINICA, Vol.19, No.1, 1996.
  34. Q. Zhang and Y. W. Leung, Energy Function for One-Unit Oja Algorithm, IEEE Trans. on Neural Networks, Vol.6, NO.5, 1995.
  35. Q. Zhang and B. Zheng, Dynamical System for Computing the Eigenvectors associated with the Largest Eigenvalue of a Positive Definite Matrix, IEEE Trans. on Neural Networks, Vol.6, NO.3, 1995.

Conference Papers and Book Chapters:

  1. Bo Liu, Qingfu Zhang, Francisco V. Fernández, Georges G. E. Gielen Self-adaptive lower confidence bound: A new general and effective prescreening method for Gaussian Process surrogate model assisted evolutionary algorithms. IEEE Congress on Evolutionary Computation 2012:1-6
  2. Aimin Zhou, Qingfu Zhang, Guixu Zhang: A multiobjective evolutionary algorithm based on decomposition and probability model. IEEE Congress on Evolutionary Computation 2012:1-8
  3. Dhish Kumar Saxena, Qingfu Zhang, João A. Duro, Ashutosh Tiwari: Framework for Many-Objective Test Problems with Both Simple and Complicated Pareto-Set Shapes. EMO 2011:197-211
  4. Nasser Tairan, Qingfu Zhang: P-GLS-II: an enhanced version of the population-based guided local search. GECCO 2011:537-544
  5. Maoguo Gong, Fang Liu, Wei Zhang, Licheng Jiao, Qingfu Zhang: Interactive MOEA/D for multi-objective decision making. GECCO 2011:721-728
  6. Jingjing Ma, Yanhui Wang, Maoguo Gong, Licheng Jiao, Qingfu Zhang: Spatio-temporal data evolutionary clustering based on MOEA/D. GECCO (Companion) 2011:85-86
  7. Carlos Echegoyen, Qingfu Zhang, Alexander Mendiburu, Roberto Santana, José Antonio Lozano: On the limits of effectiveness in estimation of distribution algorithms. IEEE Congress on Evolutionary Computation 2011:1573-1580
  8. Juan José Durillo, Qingfu Zhang, Antonio J. Nebro, Enrique Alba: Distribution of Computational Effort in Parallel MOEA/D. LION 2011:488-502
  9. Bashar Awwad Shiekh Hasan, John Q. Gan, Qingfu Zhang: Multi-objective evolutionary methods for channel selection in Brain-Computer Interfaces: Some preliminary experimental results. IEEE Congress on Evolutionary Computation 2010.
  10. Nasser Tairan, Qingfu Zhang: Population-Based Guided Local Search: Some preliminary experimental results. IEEE Congress on Evolutionary Computation 2010
  11. Aimin Zhou, Qingfu Zhang: A surrogate-assisted evolutionary algorithm for minimax optimization. IEEE Congress on Evolutionary Computation 2010.
  12. Bo Liu, Francisco V. Fernández, and Qingfu Zhang, Murat Pak Suha Sipahi Georges G. E. Gielen: An enhanced MOEA/D-DE and its application to multiobjective analog cell sizing.IEEE Congress on Evolutionary Computation 2010.
  13. Qingfu Zhang, Hui Li, Dietmar Maringer Edward Tsang, MOEA/D with NBI-style Tchebycheff approach for portfolio management.IEEE Congress on Evolutionary Computation 2010.
  14. Andreas Konstantinidis, Christoforos Charalambous, Aimin Zhou, and Qingfu Zhang: Multi-objective mobile agent-based Sensor Network Routing using MOEA/D.IEEE Congress on Evolutionary Computation 2010.
  15. Andreas Konstantinidis, Kun Yang and Qingfu Zhang, Problem-specific Encoding and Genetic Operation for a Multi-Objective Deployment and Power Assignment Problem in Wireless Sensor Networks, IEEE International Conference on Communications, ICC'09 AHSN, Dresden, Germany, June 2009.
  16. A. Brownlee, J. McCall, S. Shakya and Q. Zhang, Structure Learning and Optimisation in a Markov-network based Estimation of Distribution Algorithm, CEC’09, Norway.
  17. Wudong Liu, Qingfu Zhang and Edward Tsang and Botond Virginas, Fuzzy Clustering Based Gaussian Process Model for Large Training Set and Its Application in Expensive Evolutionary Optimization, CEC’09, Norway.
  18. Andreas Konstantinidis, Qingfu Zhang and Kun Yang, A Subproblem-dependent Heuristic in MOEA/D n for the Deployment and Power Assignment Problem in Wireless Sensor Networks, CEC’09, Norway.
  19. Chih-Ming Chen, Ying-ping Chen and Qingfu Zhang, Enhancing MOEA/D with Guided Mutation and Priority Update for Multi-objective Optimization, CEC’09, Norway
  20. Shih-Hsin Chen, Pei Chann Chang and Qingfu Zhang, A Self-guided Genetic Algorithm for Flowshop Scheduling problems, CEC’09, Norway.
  21. Qingfu Zhang, Wudong liu and Hui Li, The Performance of a New MOEA/D on CEC09 MOP Test Instances, CEC’09, Norway.
  22. W. Peng and Q. Zhang and H. Li, Comparision between {MOEA/D and NSGA-II} on the Multi-Objective Travelling Salesman Problem, in Multi-Objective Memetic Algorithms, ed by Chi-Keong Goh and Yew-Soon Ong and Kay Chen Tan, Heidelberg, Berlin, 2009.
  23. S-H. Chen, P. C Chang, Q. Zhang, Self-Guided Genetic Algorithm. ICIC (2) 2008: 292-299
  24. P. C. Chang, S. H. Chen and Q. Zhang, MOEA/D for Flowshop Scheduling Problems, CEC'08. HongKong.

  25. A. Zhou, Q. Zhang, Y. Jin and B. Sendhoff, Combination of EDA and DE for Continuous Biobjective Optimisation, CEC'08. HongKong..

  26. W. Liu, Q. Zhang, E. Tsang and B Virginas, Tchebycheff Approximation in Gaussian Process Model Composition for Multi-objective Expensive Black Box Optimisation, CEC'08. HongKong.

  27. S. Brownlee, J. McCall, Q. Zhang and D. Brown, Approaches to Selection and Their Effect on Fitness Modelling in an Estimation of Distribution Algorithm, CEC'08. HongKong.

  28. Andreas Konstantinidis, Kun Yang and Qingfu Zhang, An Evolutionary Algorithm to a Multi-Objective Deployment and Power Assignment Problem in Wireless Sensor Networks, IEEE Global Telecommunications Conference, GlobeCom'08, New Orleans, USA, Nov. 2008.
  29. Wudong Liu, Qingfu Zhang, Edward P. K. Tsang, Cao Liu and Botond Virginas, On the Performance of Metamodel Assisted MOEA/D. ISICA 2007: 547-557
  30. A. Zhou, Q.Zhang, Y.Jin, and B.Sendhoff, Adaptive modelling strategy for continuous multi-objective optimization, in Proceedings of the Congress on Evolutionary Computation (CEC 2007).Singapore: IEEE Press, September 2007, pp. 431-437.

  31. Abdellah Salhi, José Antonio Vázquez Rodríguez, Qingfu Zhang: An estimation of distribution algorithm with guided mutation for a complex flow shop scheduling problem. GECCO 2007: 570-576
  32. A. Zhou, Q. Zhang, Y.Jin, B.Sendhoff, and E.Tsang, ``Global multiobjective optimization via estimation of distribution algorithm with biased initialization and crossover,'' in Proceedings of the conference on Genetic and evolutionary computation (GECCO 2007), London, July 2007, pp. 617-622.
  33. Aimin Zhou, Qingfu Zhang, Yaochu Jin, Bernhard Sendhoff and Edward Tsang. Prediction-based Population Re-initialization for Evolutionary Dynamic Multi-objective Optimization. Proceedings of the Fourth International Conference on Evolutionary Multi-Criterion Optimization (EMO 2007).
  34. Q. Zhang, K. Yang, I. Henning.On Energy-aware Topology Control of Wireless Sensor Networks Using Modern Heuristics, Proc. of IEEE Globecom 2006, San Francisco, USA, Nov. 2006.
  35. S. Ou, K. Yang, Q. Zhang.An Efficient Runtime Offloading Approach for Pervasive Services, Proc. of IEEE Wireless Communications & Networking Conference (WCNC) 2006, IEEE Press, 3 - 6 April 2006, Las Vegas, USA.
  36. J. Sun, Q. Zhang, J. Li and X. Yao, A Hybrid Estimation of Distribution Algorithm for CDMA Cellular System Design, The 6th International Conference on Simulated Evolution and Learning, Hefei, China. 2006
  37. H. Li, Q. Zhang, A Multiobjective Differential Evolution Based on Decomposition for Multiobjective Optimization with Variable Linkages, Reykjavik 10-13 September, 2006
  38. A. Zhou, Q. Zhang, Y. Jin, B. Sendhoff, E. Tsang, Modelling the population distribution in multi-objective optimization by generative topographic mapping. PPSN'06. Reykjavik 10-13 September, 2006.

  39. Q. Zhang and J. Sun, Iterated Local Search with Guided Mutation, CEC'06, Vancouver, 2006.

  40. A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, E. Tsang, Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion, CEC'06, Vancouver, 2006.

  41. H. Li and Q. Zhang, A Decomposition Evolutionary Strategy for Bi-Objective Optimisation, AISB06, Bristol, 2006..
  42. Zhou, Q. Zhang, Y. Jin, E. Tsang, T. Okabe, A model-based evolutionary algorithm for bi-objective optimization. Congress on Evolutionary Computation, pp.2568-2575, Edinburgh, September 2005.
  43. Q. Zhang, J. Sun, E. Tsang, J. Ford, Estimation of Distribution Algorithm with 2-opt Local Search, in J.A. Lozano, P. Larrañaga, I. Inza, E. Bengoetxea (ed.) Towards a New Evolutionary Computation. Advances in Estimation of Distribution Algorithm'', Springer Verlag. 2006.
  44. J. He, X. Yao and Q. Zhang, To understand one-dimensional continuous fitness landscapes by drift analysis, Proc. of the 2004 Congress on Evolutionary Computation, pp.1248-1253, IEEE Press, Piscataway, NJ, USA, 19-23 June 2004, Portland, Oregon, USA.

  45. H. Li, Q. Zhang, E. Tsang, and J. A. Ford, Hybrid Estimation of Distribution Algorithm for Multi-objective Knapsack
    Problem, the 4th European Conference on Evolutionary Computation in Combinatorial Optimization, 5-7 April 2004, Coimbra, Portugal.

  46. Q. Zhang, J. Sun, E. Tsang, J. Ford, Combination of Guided Local Search and Estimation of Distribution Algorithm for Solving Quadratic Assignment Problem, Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, 2003.

  47. Q. Zhang, J. Sun, E. Tsang, J. A. Ford, Estimation of distribution algorithm based on mixture: preliminary experimental results, Proceedings of UKCI-02, 2002. (no figures but it is still readable).

  48. Q. Zhang, Evolutionary Algorithms With Experimental Design Technique, in Advance in Fuzzy Systems and Evolutionary Computation, (ed. By N. E. Mastorakis) 2001. World Sci. and Eng. Press.
  49. Q. Zhang, N. Allinson and H. Yin, Population optimisation algorithm based ICA, Proc. The First IEEE Symposium on
    Combinations of Evolutionary Computation and Neural Networks, 2000.

  50. Q. Zhang, H. Yin and N. Allinson, A simplified ICA based denoising methods, Proc. Int. Joint. Conf. on Neural Networks (IJCNN'00), Vol. 5, 2000.

_________________________________________________________________________________________

Last updated March 2006, Q. Zhang